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Visual Servoing
for Online
Facilities

D istributed multimedia systems for remote
instrumentation aim to provide access to facil-
ities for collaborative research.1-3 The enabling

technologies for these systems include a human-
machine interface, shared visualization environment,
and the required communication infrastructure. The
impact of such capabilities is twofold: They extend
and enhance the use of scarce resources and provide
avenues for closer collaboration.

In the research environment, the natural evolu-
tion for such systems is to provide the computational
framework to analyze images, extract meaningful
information from a video sequence in real time, and
manipulate experiments, over a wide area network.
Such a framework serves as a broad base for gen-
eral laboratory automation.

Our efforts focus on developing a framework for
remotely manipulating microscopic objects. Two
diverse applications demonstrate our framework’s use-
fulness: microdissection of DNA molecules  and in-
situ examination of crystal formation. Microdissection
and subsequent amplification of DNA molecules allow
for rapid closure of gaps in the genomic library. In-
situ experiments reveal information about the ther-
mal and morphological properties of crystal structures.
For more information see the “Genes and Crystals”
sidebar on page 58.

Both experiments are labor-intensive and can
benefit from automation. Their common thread in
our framework is a set of visual routines, which we
implement over a distributed client-server software
architecture for better throughput, scalability, and
modularity. This model also enables remote opera-
tion of the proposed experiments over a wide area
network, which is particularly significant for
dynamic studies. Previously, thermal drift, rapid
topological changes on the specimen, and unpre-
dictable WAN latency made this class of experi-
ments unsuitable for remote operation. We have
demonstrated that intelligent visual interpretation

and the use of this information for control will com-
pensate for the  Internet environment’s latency and
ease the use of a complicated and centralized instru-
ment.

The testbeds for these experiments are a flores-
cence optical microscope (for DNA microdissection)
and a 1.5-MeV transmission electron microscope
(to study crystal formation) that is operated by the
National Center for Electron Microscopy. The
experiments are being performed as a part of the
Department of Energy’s DOE 2000 National
Collaboratory Program. 

APPROACH
Our general approach is to separate interactions

into two groups: those that don’t require low-
latency communication and those that do. Basic
human interactions that establish control system
parameters, such as gross positioning and identify-
ing objects of interest, do not require low-latency
communication. Tasks such as autofocusing and
thermal-drift correction do. In this framework,
visual routines provide the necessary information
to drive the control system, hiding and automating
tedious, remote operations. It also makes remote,
real-time experiments feasible through visual ser-
voing over a high-speed, local area network. Figure
1 illustrates this approach.

COMPUTATIONAL ENVIRONMENT
The computational environment that implements

automated control in the local environment must
acquire images, process them at the required rate,
and manipulate several functions that operate the
microscopes. Our strategy for partitioning these
operations is based on design philosophy (which
emphasizes scalability, modularity, reusability, and
cost) and on the data acquisition components avail-
able for our various hardware platforms. For these
reasons, we used two Sun Microsystems Sparc 20s

Visual servoing for online facilities aims at automated manipulation 
of instrument control parameters based on visual-scene interpretation. 
It provides a layer of computing that hides the latency in the Internet 
environment and simplifies the use of scientific imaging instruments. 
This approach makes remote real-time imaging experiments feasible 
over unpredictable wide area networks.
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for image capture (one for each microscope), a Digital
Equipment Corp. 2100 symmetric multiprocessor for
CPU-intensive operations, and a PC for data acquisi-
tion. Physically, the Sparc 20s and the PC operate near
the microscopes, while the DEC 2100 is in another
laboratory building and connects via a LAN. The

Sparc 20s and the DEC 2100 transfer images over a
fiber distributed data interface (FDDI) ring at 100
Mbytes per second, as Figure 2 illustrates. 

VISUAL ROUTINES
In remote microscopy, the system must provide the

Figure 1. Remote
operation architec-
ture.
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look and feel available to the local operator and hide the
inherent latency in the WAN. Look and feel is achieved
through an appropriate user interface. Hiding the net-
work latency is achieved through visual servoing.

From an algorithmic perspective, a common set of
requirements for our two applications includes

• image compression and autofocusing,
• self-calibration,
• object detection,
• tracking, and
• servo-loop control.

These requirements are realized through a set of
computational techniques that have been developed
in our laboratory4-6 as well as by modification and
extension of existing approaches.7,8 We implement
each requirement in a separate computational com-
ponent.

Image compression and autofocusing
Both image compression and autofocusing use the

wavelet transform as their underlying principle. We
use Ingrid Daubechies’s kernels,9 which are simple,
orthogonal, highly localized, and separable for two-
dimensional processing. The wavelet transform’s main
advantage is that it can represent local feature activi-
ties at multiple scales through spatial decimation.
During image compression, our system ignores low-
order wavelet coefficients and encodes the remaining
ones in 16 × 16 pixel blocks. The remote user has full
control over what percentage of wavelet coefficients
the system uses for compression.

Autofocusing has two operational modes: initial-
ization and runtime. The difference between these
modes is based on the scope of the search for the best
focal position. Our system measures focus quality by
accumulating the square of the wavelet coefficients in
a particular subband. At runtime (as a user heats the

Genes and Crystals
Two applications drove our develop-

ment efforts.

Microdissection of DNA Molecules
Precise, automated microdissection of

stretched and immobilized single DNA mol-
ecules has several important applications. If
multiple (20 to 200) samples can be recov-
ered from the same region of identical mol-
ecules that have been stretched to the same
extent, it is possible to amplify this material
using the polymerase chain reaction.
Scientists can then use microdissected and
amplified DNA as a probe to identify mem-
bers of large genomic libraries that contain
DNA identical to that of the dissected
region.

Human genomic libraries are large
arrays of clones (yeast or bacterial cells) in
which each clone contains one specific
fragment of the human genome. The
human genome consists of approximately
4 billion nucleic acid bases from 24 differ-
ent chromosomes, and each human chro-
mosome contains a single strand of DNA
that is 50 to 250 megabases. This genomic
DNA is broken into fragments, and each
clone of a genomic library contains a sin-
gle fragment. Yeast clones containing yeast
artificial chromosomes may contain intact
human DNA fragments as large as one
megabase, whereas other types of more sta-
ble bacterial clones contain smaller intact
fragments (75 to 300 kilobases).

In all cases, the clones in genomic
libraries contain random and different but
sometimes overlapping DNA fragments.
The members of the library must be iden-

tified in a way that reconstructs the origi-
nal order of the fragments in the human
chromosomes. This process is first per-
formed using genomic libraries containing
clones with very large fragments (yeast arti-
ficial chromosomes). Next, members of
this ordered library serve as templates on
which to order clones from other libraries
in which the members contain smaller
DNA fragments. One of the Human
Genome Project’s goals is to obtain ordered
sets of overlapping clones containing DNA
fragments short enough (500 to 2,000 base
pairs) to submit to automated DNA
sequencing machines. These ordered sets
of clones can then be propagated and
shared between laboratories for gene dis-
covery and medical research.

The proposed application is designed to
target regions on large-fragment clones
where there are gaps in previously ordered
sets of P1 (bacterial) clones. Closing gaps
is currently the most time-consuming
process in obtaining ordered sets of clones.
Scientists have  proposed that small, spe-
cific regions (5 to 10 kilobases) of the gap
be recovered, amplified, and then used as
probes to identify clones that fill in the
missing regions. The target region is spec-
ified in terms of fractional length. Since an
extended yeast artificial chromosome DNA
can extend beyond one field of view, it
would be difficult for a human operator to
identify and dissect the correct region along
a featureless DNA molecule. Any attempt
to chemically process the DNA so that a
human operator can visualize the target
region is likely to damage the DNA and
make it impossible to amplify. In addition,

for successful amplification, microdissec-
tions should be performed quickly (to
avoid excessive illumination), precisely,
and repetitively (20 to 200 times on sepa-
rate molecules). Thus, automating the
process is essential.

From an algorithmic perspective, the sys-
tem needs to detect the position of a micro-
capillary over the coverslip, select a DNA
molecule, designate a position on the mol-
ecule, scrape a piece of that molecule, and
verify the scraped area along the molecule.

Dynamic In-Situ Microscopy
This class of scientific experiments study

a specimen perturbed by an external stim-
ulus. The stimulus can be a variation in
temperature, electromagnetic field, or the
environment’s chemical or biological com-
position. Interaction of external stimuli
with the specimen can result in sample
drift, shape deformation, changes in focus,
and other responses.

The application we studied examines
crystal shape changes (between liquid and
solid states) as a function of thermal cycles.
This is the shape-equilibrium problem, in
which we optimize the thermal path to pro-
duce identical shapes as the crystal cycles
between solid and liquid states. During in-
situ experiments, the operator constantly
adjusts the instrument to maintain focus
and compensate for various drifts. This
labor-intensive task requires a high-band-
width video link and is nearly impossible
to perform remotely because of network
latency. Therefore, to accomplish remote
operation, we must resort to automated
video analysis tools.

.



specimen), the system automatically makes small focal
position adjustments to compensate for three-dimen-
sional changes in the shape of inclusions (crystals in
any form). Similarly, for DNA microdissection, the
coverslip (a thin glass holding a specimen on a micro-
scope slide) is not perfectly flat. Our system slightly
adjusts the focal position as the stage that holds the
coverslip moves from one location to the next.

Self-calibration
The motion of the xy stage (a platform holding the

specimens in both applications) or the robotic arm
(for DNA microdissection only) is precisely mapped
into the actual pixel size. This mapping is an affine
transform estimated by using either low- or high-level
features. Because most microscopy applications have
a narrow depth of field, we constrained the motion to
two dimensions to simplify calibration.

In the case of microdissection of DNA molecules,
it is also necessary to calibrate the robotic arm. The
transform is obtained by projecting a deformable con-
tour model on a microcapillary mounted on the arm.
The arm is then moved into two known positions, and
the microcapillary’s position is reacquired with the
deformable model. Calibration of the xy stage—for
either optical or electron microscope—is performed
with the optical flow field.7 The image motion, as per-
ceived from the viewpoint of the xy translation stage,
is  rotated and slightly off the scale in one axis. A pyra-
mid implementation of the optical flow field is used
to rapidly obtain the affine parameters.

Object detection
The system can detect tubular, convex, and circu-

lar objects. We model DNA molecules, observed under
the optical microscope, as tubular objects; inclusions,
observed under an electron microscope, as convex
objects; and living cells, observed under the optical
microscope, as circular objects.

Object detection is based on perceptual grouping
principles. We define grouping as aggregating fea-
tures—such as line segments or local symmetries—so
that certain rules and geometric constraints are satis-
fied. This is initiated by using Canny’s edge detector,
and the final grouping is expressed as bounding poly-
gons around objects of interest. This description is
then refined, projected, and tracked in subsequent
frames using the tracking subsystem. In this context,
object detection occurs only in the first frame for ini-
tialization. To detect DNA molecules, the object detec-
tion subsystem groups U shapes and antiparallel
segments (two parallel line segments with opposing
directions). In a sense, the subsystem performs group-
ing along the object’s axis of symmetry.

To detect inclusions, the subsystem accumulates
line segments as long as they satisfy the convexity

constraint. The actual search process is based either
on dynamic programming or greedy search; earlier
publications explain the details.5,6 Figure 3 shows
examples of DNA molecule and crystal inclusion
detection.

Object tracking
Our system supports two modes of tracking based

on high- and low-level feature activities correspond-
ing to deformable contours and optical flow field. 

During dynamic, in-situ experiments on the elec-
tron microscope, it is necessary to compensate for
thermal drift as the specimen is heated. We have built
a closed-loop system using optical flow field compu-
tation to stabilize the stage where the specimen is
located. Current throughput is 4 Hz using a multigrid
implementation of the optical flow technique. The
actual software implementation uses Posix threads to
realize the necessary parallelism under the DEC Unix
operating system.

The second mode of tracking is based on high-level
shape changes, where a variant of the deformable
model5 is used to quantify and track objects of inter-
est. This approach initially refines the bounding poly-
gon obtained during the detection process and then
projects it on each consecutive frame for continuous
updating. Conceptually, each point on the refined
contour should have high gradient and good direc-
tional continuity with both the low- and high-level
features. Low-level features refer to the edge direc-
tion among nearby edges, and high-level features refer
to the direction of a nearby line segment corre-

Figure 3. Detection of
DNA molecules: (a)
original image with
Canny’s edges and (b)
detected tubular
objects. Detection of
germanium inclusion:
(c) original image
with Canny’s edges
and (d) detected con-
vex shapes.
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sponding to the bounding polygon. We defined an
appropriate cost function to integrate these con-
straints and optimized it with dynamic programming.
We have implemented a multigrid implementation of
this algorithm for high processing speed and higher
tolerance of large motion.

The system automatically tracks the object, con-
trols drift, and hides network latencies from the
remote user. The drift control is based on tracking
and compensating for the contour’s centroid. Figure
4 shows the centroid with a crosshair on the image
of the reconstructed wavelet coefficients. An arrow
indicates the direction of the motion. In addition to
topological shape changes that occur during heating
and cooling, thermal drift reverses its direction with
changes in the temperature gradient’s polarity.

Servo-loop control
There are two aspects to servo-loop control: posi-

tioning the robotic arm for scraping DNA molecules
and correcting thermal drift during in-situ experi-
ments. Both of these applications use deformable con-
tours to acquire, refine, and reposition the mechanical
assembly. However, the placement of the robotic arm
is imprecise and needs to be more accurate. This is
accomplished by moving the microcapillary near the
scraping site, reacquiring the microcapillary’s position
using the deformable contour, repositioning it to
where it should be, scraping the site, and then verify-
ing the scraped site by simple thresholding. Figure 5
shows this protocol, and Figure 6 shows an example
of microdissection.

In contrast, thermal drift correction is continuous,
smooth, and linear. We use a Kalman filter model to pre-
dict motion, similar to research reported earlier.8 Our
implementation uses position and velocity to represent
the object’s  internal state. In this context, the model pre-
dicts the inclusion’s trajectory. As a result, instead of
making incremental corrections to the xy stage platform,
we run the controller at a constant speed and in a direc-
tion opposite that of the thermal drift. The speed is then
refined at the tracker sampling interval. We discussed
details of the Kalman filtering model elsewhere.4

SOFTWARE ARCHITECTURE
We use four servers—video, motion, instrument, and

data acquisition—in a distributed client-server model.
In the architecture shown in Figure 2, each server can
interact with any other. The video server captures
images and transfers them to the motion server, which

Target a DNA
molecule

Reacquire
microcapillary

Lift the
microcapillary

Refine
microcapillary's

position

Move to
target

molecule
Scrape

Lower
microcapillary Verify

(a)

Figure 5. (a) Protocol for scraping a DNA molecule and (b)
tip of the microcapillary viewed under a transmitted light
source.

Figure 4. Tracking and compensating for drift during heating and cooling cycles. The direction of drift reverses as the specimen cools: (a) Inclusion is 
initially faceted as it is heated but becomes round (b) at high temperature.
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manages visual routines and servoing. Using a threaded
programming paradigm for parallel decomposition,
the visual-routines and servoing module execute asyn-
chronously. The instrument server provides the
abstract interface to instrument control for various
clients. The data acquisition server provides the low-
level interface to underlying hardware.

The motion server’s software implementation is
interesting. As Figure 7 shows, this server has four
asynchronous threads. The instrument thread handles
interaction with the instrument server, and we have
isolated it for modularity—most PC interactions aver-
age about 5 ms. The tracking thread operates at 8 to
10 Hz (depending on the inclusion size) and uses two
CPUs for concurrent processing. The compression
thread runs at 4 Hz and shares a thread-safe buffer—
through locks and conditional wait—with the track-
ing thread. The focus thread runs at lower throughput
and on a single thread over the target region.

O ur framework’s main benefit is the increased use
of a sophisticated instrument (the electron micro-
scope) that had restricted access up to this time

because of its sensitive components and requirement
for a skilled operator. Secondary benefits include lower
costs for conducting individual experiments and
increased capability for collaboration among experi-
menters. These benefits are realized through real-time
visual servoing that serves as a computational layer to

hide the latency in the wide area network. For more
information see  http://www-itg.lbl.gov. ❖
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Figure 6. Microdissection of a single DNA molecule under florescence light: (a) original
image with microcapillary and several DNA molecules, (b) microcapillary is positioned
near the scraping site, (c) microcapillary scrapes the molecule, and (d) a last visual
image  verifies the scraped area.

Figure 7. Interaction of various threads during real-time control.
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